Q1.

	3 (a)	f ₀ is at natural frequency of spring (system) this is at the driver frequency		[2]
	(b)	line: amplitude less at all frequencies	B1	[3]
	(c)	(aluminium) sheet cuts the magnetic flux/field	B1 M1 A1 A0	[4]
Q2 .					
4	(a)		e.g. amplitude is not constant or wave is damped do not allow 'displacement constant' should be (-)cos, (not sin)	B1 B1	[2]
	(b)		T = 0.60 s $\omega = 2\pi/T = 10.5 \text{ rad s}^{-1} \text{ (allow } 10.4 \rightarrow 10.6)$	C1 A1	[2]
	(c)		same period displacement always less amplitude reducing appropriately for 2 nd and 3 rd marks, ignore the first quarter period	B1 M1 A1	[3] [7]
Q3.					
4	(a)		acceleration proportional to displacement (from a fixed point)	M1	
			<u>or</u> $a = -\omega^2 x$ with a , ω and x explained and directed towards a fixed point <u>or</u> negative sign explained	A1	[2]
	(b)		for s.h.m., $a=(-)\omega^2x$ identifies ω^2 as $A\rho g/M$ and therefore s.h.m. (may be implied) $2\pi f=\omega$	B1 B1 B1	
			hence $f = \frac{1}{2\pi} \sqrt{\frac{Apg}{M}}$	A0	[3]
	(c)	(i)	$T = 0.60 \text{ s } \frac{\text{or}}{\text{o}} f = 1.7 \text{ Hz}$ $0.60 = (2\pi\sqrt{M})/\sqrt{(\pi \times \{1.2 \times 10^{-2}\}^2 \times 950 \times 9.81)}$ M = 0.0384 kg	C1 C1 A1	[3]
		(ii)	decreasing peak height/amplitude	B1	[1]

Q4.

4	(a)	(i)	1.0		B1	[1
		(ii)	40 Hz		В1	[1
	(b)	(i)	speed = $2\pi fa$ = $2\pi \times 40 \times 42 \times 10^{-3}$ = 10.6 m s^{-1}		C1 A1	[2
		(ii)	acceleration = $4\pi^2 f^2 a$ = $(80\pi)^2 \times 42 \times 10^{-3}$ = 2650 m s ⁻²		C1 A1	[2
	(c)	(i)	S marked correctly (on 'horizontal line through centre of wheel)		В1	
		(ii)	A marked correctly (on 'vertical line' through centre of wheel)		B1	[2
Q5.						
7	(a)	(i)	oscillations are damped/amplitude decreases as magnet moves, flux is cut by coil e.m.f./current is induced in the coil causing energy loss in load OR force on magnet energy is derived from oscillations of magnet OR force opposes motion of magnet	B1 B1 B1 B1		[5]
		(ii)	T = 0.60 s $\omega_0 (= 2\pi/T) = 10.5 \text{ rad s}^{-1}$	C1 A1	J	[2]
	(b)		tch: sinusoidal wave with period unchanged or slightly smaller ne initial displacement, less damping	M1 A1	ы	[2]
	(c)	(i)	sketch: general shape – peaked curve peak at ω_0 and amplitude never zero	M1 A1		[2]
		(ii)	<u>resonance</u>	B1		[1]
		(iii)	useful: e.g. child on swing, microwave oven heating avoid: e.g. vibrating panels, vibrating bridges (for credit, stated example must be put in context)	B1 B1		[2]

Q6.

3	(a)	(i)	amplitude = 0.5 cm	A1	[1]
	(ii)	period = 0.8 s	A1	[1]
	(b)	(i)	$\omega = 2\pi / T$ = 7.85 rad s ⁻¹ correct use of $v = \omega \sqrt{(x_0^2 - x^2)}$	C1 B1	
			= $7.85 \times \sqrt{(0.5 \times 10^{-2})^2 - (0.2 \times 10^{-2})^2}$ = 3.6 cm s^{-1} (if tangent drawn or clearly implied (B1) $3.6 \pm 0.3 \text{ cm s}^{-1}$ (A2) but allow 1 mark for > $\pm 0.3 \text{ but} \le \pm 0.6 \text{ cm s}^{-1}$)	A1	[3]
	(ii)	d = 15.8 cm	A1	[1]
	(c)	(i)	(continuous) loss of energy / reduction in amplitude (from the oscillating system) caused by force acting in opposite direction to the motion / friction / viscous forces	B1	[2]
	(ii)		B1 M1 A1	[3]
Q7.					
3	(a)	(i)	to-and-fro / backward and forward motion (between two limits)	B1	[1]
	(ii)	no energy loss or gain / no external force acting / constant energy / constant and	nplitud B1	le [1]
	(i	ii)	acceleration directed towards a fixed point acceleration proportional to distance from the fixed point / displacement	B1 B1	[2]
			celeration is constant (magnitude) cannot be s.h.m.	M1 A1	[2]

Q8.

2	(a)	(i)	reduction in energy (of the oscillations) reduction in amplitude / energy of oscillations due to force (always) opposing motion / resistive forces any two of the above, max 2	(B1) (B1) (B1)	[2]
		(ii)	amplitude is decreasing (very) gradually / oscillations would continue (for a long time) /many oscillations light damping	M1 A1	[2]
	(b)	(i)	frequency = $1/0.3$ = 3.3 Hz allow points taken from time axis giving $f = 3.45 \text{ Hz}$	A1	[1]
		(ii)	energy = $\frac{1}{2} mv^2 \frac{\text{and}}{\text{o}} v = \omega a$ = $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ	C1 M1 A0	[2]
	(c)		plitude reduces exponentially / does not decrease linearly will be not be 0.7 cm	M1 A1	[2]
Q9.					
3	(a)		eleration / force proportional to displacement from a fixed point eleration / force (always) directed towards that fixed point / in opposite	M1	
			ction to displacement	A1	[2]
	(b)	(i)	$A \rho g \mid m$ is a constant and so acceleration proportional to x negative sign shows acceleration towards a fixed point $/$ in opposite	B1	[0]
		(ii)	direction to displacement $\omega^2 = (A\rho g / m)$	B1 C1	[2]
		(II)	$\omega = 2\pi f$	C1	
			$(2 \times \pi \times 1.5)^2 = (\{4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81\} / m)$ m = 50 g	C1 A1	[4]
Q10.					
4	(a)	T =	$(-)\omega^2 x$ and $\omega = 2\pi/T$ 0.60 s $(4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$	C1 C1	
		a =	$(4\pi \times 2.0 \times 10^{-}) / (0.6)$ $2.2 \mathrm{ms}^{-2}$	A1	[3]
	(b)	all v	usoidal wave with all values positive values positive, all peaks at E_K and energy = 0 at t = 0 od = 0.30 s	B1 B1 B1	[3]

Q11.

```
2 (a) energy = \frac{1}{2}m\omega^2a^2 and \omega = 2\pi f
                                                                                                               C1
                      = \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2
                                                                                                               M1
                      = 7.0 \times 10^{-3} \text{J}
                                                                                                               A0
                                                                                                                                [2]
           (allow 2\pi \times 3.5 shown as 7\pi)
           Energy = \frac{1}{2} mv^2 and v = r\omega
                                                                                                               (C1)
           Correct substitution
                                                                                                               (M1)
           Energy = 7.0 \times 10^{-3} J
                                                                                                               (A0)
     (b) E_K = E_P
           \frac{1}{1/2}m\omega^2(a^2-x^2) = \frac{1}{2}m\omega^2x^2 or E_K or E_P = 3.5 \text{ mJ}
                                                                                                               C1
           x = a/\sqrt{2} = 2.8/\sqrt{2}
                                          or E_K = \frac{1}{2}m\omega^2(a^2 - x^2)
                                                                              or E_P = \frac{1}{2}m\omega^2 x^2
                                                                                                               C<sub>1</sub>
             = 2.0 cm
                                                                                                               A1
                                                                                                                                [3]
           (E_{\rm K} \text{ or } E_{\rm P} = 7.0 \text{ mJ scores } 0/3)
           Allow: k = 17.9
                                                                                                               (C1)
                      E = \frac{1}{2} kx^2
                                                                                                               (C1)
                      x = 2.0 \, \text{cm}
                                                                                                               (A1)
 (c) (i) graph: horizontal line, y-intercept = 7.0 mJ with end-points of line at
                         +2.8cm and -2.8cm
                                                                                                            B1
                                                                                                                              [1]
       (ii) graph: reasonable curve
                                                                                                            B1
                         with maximum at (0,7.0) end-points of line at (-2.8, 0)
                         and (+2.8, 0)
                                                                                                            B1
                                                                                                                              [2]
      (iii) graph: inverted version of (ii)
                                                                                                            M1
                         with intersections at (-2.0, 3.5) and (+2.0, 3.5)
                                                                                                            A<sub>1</sub>
                                                                                                                              [2]
           (Allow marks in (iii), but not in (ii), if graphs K & P are not labelled)
 (d) gravitational potential energy
                                                                                                            B1
                                                                                                                              [1]
```

Q12.

```
3 (a) (i) 1. amplitude = 1.7 cm
                                                                                                                                             A1
                                                                                                                                                     [1]
                        2. period
                                               = 0.36 \, cm
                                                                                                                                             C<sub>1</sub>
                              frequency = 1/0.36
                                               = 2.8 Hz
                                                                                                                                             A<sub>1</sub>
                                                                                                                                                      [2]
                 (ii) a = (-)\omega^2 x and \omega = 2\pi/T
                                                                                                                                             C<sub>1</sub>
                        acceleration = (2\pi/0.36)^2 \times 1.7 \times 10^{-2}
                                                                                                                                             M1
                                          = 5.2 \,\mathrm{m \, s^{-2}}
                                                                                                                                                      [2]
                                                                                                                                             A<sub>0</sub>
           (b) graph: straight line, through origin, with negative gradient
                                                                                                                                             M1
                              from (-1.7 \times 10^{-2}, 5.2) to (1.7 \times 10^{-2}, -5.2)
                                                                                                                                             A1
                                                                                                                                                      [2]
                  (if scale not reasonable, do not allow second mark)
           (c) either kinetic energy = \frac{1}{2}m\omega^2(x_0^2 - x^2)
                             potential energy = \frac{1}{2}m\omega^2x^2 and potential energy = kinetic energy
                                                                                                                                             B1
                 \frac{1}{2}m\omega^{2}(x_{0}-x^{2})=\frac{1}{2}\times\frac{1}{2}m\omega^{2}x_{0}^{2} \text{ or } \frac{1}{2}m\omega^{2}x^{2}=\frac{1}{2}\times\frac{1}{2}m\omega^{2}x_{0}^{2}
                                                                                                                                             C<sub>1</sub>
                 x_0^2 = 2x^2
                 x = x_0 / \sqrt{2} = 1.7 / \sqrt{2}
                   = 1.2cm
                                                                                                                                             A<sub>1</sub>
                                                                                                                                                     [3]
Q13.
      3 (a) (i) \omega = 2\pi / T
                                                                                                                                              C1
                            = 2\pi / 0.69
                            = 9.1 \text{ rad s}^{-1}
                                                                                                                                                      [2]
                                                                                                                                              A1
                         (allow use of f = 1.5 Hz to give \omega = 9.4 rad s<sup>-1</sup>)
                  (ii) 1. x = 2.1 \cos 9.1t
                               2.1 and 9.1 numerical values
                                                                                                                                              B1
                                                                                                                                                      [2]
                               use of cos
                                                                                                                                              B1
                         2. v_0 = 2.1 \times 10^{-2} \times 9.1 (allow ecf of value of x_0 from (ii)1.)
                                 = 0.19 \text{ m s}^{-1}
                                                                                                                                              B1
                               v = v_0 \sin 9.1t (allow \cos 9.1t if \sin used in (ii)1.)
                                                                                                                                              B<sub>1</sub>
                                                                                                                                                      [2]
            (b) energy = either \frac{1}{2} m v_0^2 or \frac{1}{2} m \omega^2 x_0^2
                             = either \frac{1}{2} \times 0.078 \times 0.19^2 or \frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^{-2})^2
                                                                                                                                             C<sub>1</sub>
                             = 1.4 \times 10^{-3} \text{ J}
                                                                                                                                              A1
                                                                                                                                                      [2]
```

Q14.

3 (a)	(i)		ant amplitude B1	
	(ii)		$d = 0.75 \text{ s} \dots (\text{allow } \pm 0.2 \text{ s}) \dots $ C1	
			$2\pi/T$	
			8.4 rad s ⁻¹ (-1 for 1 sf)	
	(iii)	eithei	r use of gradient or $v = \omega y_0$	F 63
			0.168 m s ⁻¹	[6]
		(апоч	w ±0.02 for construction: gradient drawn at wrong place 0/2)	
(b)	(i)	1.3 H	z B1	
(2)	(ii)		, 'pulse' provided to mass on alternate/some oscillations M1	
	()		ulses' build up the amplitude	[3]
		-	The and a sec	21
Q15.				
Q 15.				
2	(a)	(i)	a, ω and x identified(-1 each error or omission)	
-	(4)	1.7	a, wand x identified	
		(ii)	(-)ve because a and x in opposite directions	
			OR a directed towards mean position/centre B1	[3]
	(b)	(i)	forces in springs are $k(e + x)$ and $k(e - x)$	
			resultant = $k(e + x) - k(e - x)$	[0]
			= 2kx	[2]
		(ii)	F = maB1	
			a = -2kx/m	[0]
			(-)ve sign explained	[2]
		(iii)	$\omega^2 = 2k/m \dots C1$	
			$(2\pi f)^2 = (2 \times 120)/0.90$	[3]
			7 – 2.0 HZA1	[V]
	(c)		atom held in position by attractive forces	
			atom oscillates, not just two forces <i>OR</i> 3D not 1D	
			force not proportional to x	
			any two relevant points, 1 each, max 2 B2	[2]

Q16.

,	3	(a)	(i)) re	asonable shape as 'inverse' of k.e. line		1	
			(ii	i) st	raight line, parallel to x-axis at 15 mJ		1	[2]
		(b)	ei	ither	(max) kinetic energy (= $\frac{1}{2}$ mv^2) = $\frac{1}{2}$ m $\omega^2 a_0^2$ 15 x 10 ⁻³ = $\frac{1}{2}$ x 0.15 x ω^2 x (5.0 x 10 ⁻²) ² ω = 8.9(4) rad s ⁻¹		1 1 1	
			or		(k.e. = $\frac{1}{2}$ mv ²), v = 0.44(7) m s ⁻¹ ω = v/a = (0.447)/(5.0 x 10 ⁻²) ω = 8.9(4) rad s ⁻¹		1 1 1	[3]
		(c)	(i)	or	ther loss of energy (from the system) or ampliture additional force acting (on the mass) of the continuous/gradual loss or force always open the continuous of the continuous		1	[2]
			(ii		ther (now has 80% of its) p.e./k.e. = 12 mJ or low amplitude = 4.5 cm (allow ±	oss in k.e. = 3 mJ 0.1 cm)	J 1 1	[2]
Q1	7.							
4		(a)(i)	ω	$= 2\pi \times$: 1400 0 rad s ⁻¹			[2]
		(ii)	a ₀	= (-)\omega = (880	$x_0^2 x_0$	C1		
		(b)	stra	ight line	0 m s ⁻² e through origin with negative gradient of line correctly labelled	M1		[2]
		(c)(i)			acement			[1]
		(ii)	v	$= \omega x_0$ = 880	00 × 0.080 × 10 ⁻³	C1		
				= 0.70	0 m s ⁻¹	A1		[2]
Q1	8.							
3	(a)	eith ω = f =	er ω = 2 πf (1/2 π		c clear (m) or $\omega^2 = (2k/m)$ 300)/0.240)		C1 B1 C1 B1 A0	
	(b)	(i)	res	sonance	Э		В1	[1]
		(ii)	81	Hz			B1	[1]
	(c)	with	out a		nt of) damping (k or) m(some indirect reference is acceptable) tion		B1 B1 B1	

Q19.

© UCLES 2008

Page 3	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – October/November 2008	9702	04	s
(c) (i) v	$= \omega a$ = 28.3 × 11 × 10 ⁻³		C1	
	= 0.31 m s^{-1} (do not allow 1 s.f.)		A1	[2]
(ii) V	$=\omega\sqrt{(a^2-y^2)}$			
	= 3 mm		C1	
	= $28.3 \times 10^{-3} \sqrt{(11^2 - 3^2)}$ = $0.30 \text{ m s}^{-1} (allow 1 \text{ s.f.})$		C1	
	$= 0.30 \text{ m s}^{-1}$ (allow 1 s.f.)		A1	[3]

Q21.

4	(a)	(i)	amplitude = 0.2 mm	1	[1]
		(ii)	period = 1.2 ms		[2]
	(b)		any two of zero, 0.6 ms and 1.2 ms		[1]
		(ii)	any <u>two</u> of 0.3 ms, 0.9 ms, 1.5 ms	1	[1]
	(c)	or	her $v = \omega x_0 = 2\pi f x_0$ = $2\pi \times 830 \times 0.2 \times 10^{-3} = 1.05 \text{ m s}^{-1}$ slope of graph = 1.0 m s ⁻¹ (allow ± 0.1 m s ⁻¹)	1	
		Eĸ	= $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 2.5 \times 10^{-3} \times 1.05^2$		[3]
	(d)	(i)	large / maximum amplitude of vibration		[2]
		(ii)	e.g. metal panels on machinery vibrate / oscillate	l) l) l)	[2]
			[Tot	tal:	12]
222 .					
3	(a)		ight line through origin ative gradient		[2]
	(b)	750	$-\omega^2 x$ and $\omega = 2\pi f$ = $(2\pi f)^2 \times 0.3 \times 10^{-3}$ 250 Hz	C1	[3]
	(c)	(allo	ight line between(-0.3,+190) and (+0.3,-190)ow 1 mark for end of line incorrect by one grid square or line does not extend to 0.3 mm)	.A2	[2]
				[Tot	al: 7]

Q23.

3	(a) (i)	resonance	В	1 [1]
	(ii)	amplitude 16 mm and frequency 4.6 Hz	Α	1 [1]
		$a = (-)\omega^2 x$ and $\omega = 2\pi f$ $a = 4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $= 13.4 \text{ ms}^{-2}$ F = ma	A	01 01 01 [3]
		$= 150 \times 10^{-3} \times 13.4$ $= 2.0 \text{ N}$	A	1 [2]
		e always 'below' given line and never zero eak is at 4.6 Hz (or slightly less) and flatter		//1 \1 [2]
Q24	l.			
3	(a) (i)	8.0 cm	A1	[1]
	(ii)	$2\pi f = 220$ f = 35 (condone unit)	C1 A1	[2]
	(iii)	line drawn mid-way between AB and CD (allow ±2 mm)	B1	[1]
	(iv)	$v = \omega a$ = 220 × 4.0 = 880 cm s ⁻¹	C1 A1	[2]
	(b) (i)	 line drawn 3 cm above AB (allow ±2 mm) arrow pointing upwards 	B1 B1	[1] [1]
	(ii)	 line drawn 3 cm above AB (allow ±2 mm) arrow pointing downwards 	B1 B1	[1] [1]
	(iii)	$v = \omega \sqrt{(a^2 - x^2)}$ = 220 × $\sqrt{(4.0^2 - 2.0^2)}$ = 760 cm s ⁻¹ (incorrect value for x, 0/2 marks)	C1 A1	[2]
Q2 5	j.			
3	(a) (i)	amplitude remains constant	B1	[1]
	(ii)	amplitude decreases gradually light damping	M1 A1	[2]
	(iii)	period = 0.80 s frequency = 1.25 Hz (period not 0.8 s, then 0/2)	C1 A1	[2]

Q26.

3 (a) acceleration proportional to displacement/distance from fixed point and in opposite directions/directed towards fixed point A1 [2] (b) energy =
$$\frac{1}{2}m\omega^2x_0^2$$
 and $\omega = 2\pi f$ C1 = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ C1 = 2.1×10^{-5} J A1 [3] (c) (i) at maximum displacement above rest position A1 [2] (ii) acceleration = $(-)\omega^2x_0$ and acceleration = 9.81 or g C1 = $\frac{9.81}{2} = (2\pi \times 4.5)^2 \times x_0$ A1 [2]

Q27.

4	(a)	straight line through origin	M1	
		shows acceleration proportional to displacement	A1	
		negative gradient	M1	
		shows acceleration and displacement in opposite directions	A1	[4]

© Cambridge International Examinations 2012

Page 3	Mark Scheme Syllabu		Pape	
	GCE AS/A LEVEL – October/November 2012	9702	41	
(b) (i)	2.8 cm		A1	[1]
(ii)	either gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ gradient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
	$\omega = 22 \mathrm{rad} \mathrm{s}^{-1}$		C1	
1	frequency = $(22/2\pi =) 3.5 \text{Hz}$		A1	[3]
	lower spring may not be extended upper spring may exceed limit of proportionality/elastic l	imit		
	sensible suggestion)	iiiii.	B1	[1

Q28.

Q29.

3 (a) (i) any two from
$$0.3(0)$$
 s, $0.9(0)$ s, 1.50 s (allow 2.1 s etc.) B1 [1]
(ii) either $v = \omega x$ and $\omega = 2\pi/T$ C1
$$v = (2\pi/1.2) \times 1.5 \times 10^{-2}$$
 M1
$$= 0.079 \text{ m s}^{-1}$$
 A0 [2] or gradient drawn clearly at a correct position working clear (M1) to give (0.08 ± 0.01) m s⁻¹ (A0)

© Cambridge International Examinations 2013

	Page 3	Mark Scheme	Syllabus	Pape	r
ļ		GCE A LEVEL – October/November 2013	9702	41	
	(b) (i) sket	ch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersection</i>	ons between	M1	
		$y = 12.0 \rightarrow 13.0$		A1	[2]
		ax. amplitude potential energy is total energy energy = 4.0 mJ		B1 B1	[2]

4	(a)	kin	netic (energy)/KE/E _K	B1	[1]
	(b	or ne	her change in energy = 0.60 mJ max E proportional to (amplitude)²/equivalent numerical working w amplitude is 1.3 cm ange in amplitude = 0.2 cm	B1 B1 B1	[3]
Q31	•				
4	(a)	eith	eleration/force proportional to displacement (from a fixed point) er acceleration and displacement in opposite directions cceleration always directed towards a fixed point	M1 A1	[2]
	(b)	(i)	g and r are constant so a is proportional to x negative sign shows a and x are in opposite directions	B1 B1	[2]
		(ii)	$\omega^2 = g/r \text{ and } \omega = 2\pi/T$ $\omega^2 = 9.8/0.28$	C1	
			$= 35$ $T = 2\pi/\sqrt{35} = 1.06$ s	C1	
			time interval $\tau = 0.53 \mathrm{s}$	A1	[3]
	(c)	drav	tch: time period constant (or increases very slightly) wn line always 'inside' given loops cessive decrease in peak height	M1 A1 A1	[3]
Q32	•				
1	(a)	(i)	either $\omega = 2\pi/T$ or $\omega = 2\pi f$ and $f = 1/T$ $\omega = 2\pi/0.30$ = 20.9 rad s ⁻¹ (accept 2 s.f.)	C1 A1	[2]
		(ii)	kinetic energy = $\frac{1}{2}m\omega^2x_0^2$ or $v = \omega x_0$ and $\frac{1}{2}mv^2$ = $\frac{1}{2}\times 0.130\times 20.9^2\times (1.5\times 10^{-2})^2 = 6.4\times 10^{-3} \text{ J}$	C1 A1	[2]
	(b)	(i)	as magnet moves, flux is cut by $\underline{\text{cup/aluminium}}$ giving rise to induced e.m.f. (in cup)	B1	
			induced e.m.f. gives rise to currents and heating of the cup thermal energy derived from oscillations of magnet so amplitude decreases	B1 B1	
			or induced e.m.f. gives rise to currents which generate a magnetic field the magnetic field opposes the motion of the magnet so amplitude decreases	(B1) (B1)	[3]
		(ii)	either use of $\frac{1}{2}m\omega^2x_0^2$ and x_0 = 0.75 cm or x_0 is halved so $\frac{1}{4}$ energy to give new energy = 1.6 mJ	C1	
			either loss in energy = $6.4 - 1.6$ or loss = $\frac{3}{4} \times 6.4$ giving loss = 4.8 mJ	A1	[2]
	(c)	4.8	$mc\Delta\theta$ $\times 10^{-3} = 6.2 \times 10^{-3} \times 910 \times \Delta\theta$ = 8.5×10^{-4} K	C1 A1	[2]

Q33.

- 4 (a) acceleration/force proportional to displacement (from a fixed point)

 either acceleration and displacement in opposite directions

 or acceleration always directed towards a fixed point

 A1 [2]
 - (b) (i) zero & 0.625 s or 0.625 s & 1.25 s or 1.25 s & 1.875 s or 1.875 s & 2.5 s A1 [1]
 - (ii) 1. $\omega = 2\pi/T \frac{\text{and } v_0 = \omega x_0}{\omega = 2\pi/1.25}$ C1 = 5.03 rad s⁻¹ C1
 - $v_0 = 5.03 \times 3.2$ = 16.1 cm s⁻¹ (allow 2 s.f.) A1 [3]
 - 2. $v = \omega \sqrt{(x_0^2 x^2)}$ either $\frac{1}{2}\omega a = \omega \sqrt{(x_0^2 - x^2)}$ or $\frac{1}{2}\times 16.1 = 5.03\sqrt{(3.2^2 - x^2)}$ C1 $\frac{x_0^2}{4} = \frac{x_0^2 - x^2}{x = 2.8 \text{ cm}}$ 2.58 = 3.2² - x^2 x = 2.8 cm A1 [2]
 - (c) sketch: loop with origin at its centre M1 correct intercepts & shape based on (b)(ii) A1 [2]